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Through two examples: the Friedrichs model and a particular case of central potential
scattering, we illustrate the way of constructing Gamow vectors.
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1. INTRODUCTION

Gamow vectors have been introduced in order to define a vector state for
exponentially decaying resonances in Quantum Mechanics and named after the
pioneering work by Gamow in 1928 (Gamow, 1928). Although Gamow used a
simple model for the alpha decay, he obtained properties for his Gamow vectors
that are general. In particular, the radial part of their wave functions goes to infinity
asr 7→ ∞. Bound state eigenfunctions and Gamow state eigenfunctions are so-
lutions of the same radial differential equation with similar boundary conditions.
However, while bound state eigenfunctions are square integrable functions and the
corresponding eigenvalues are real, Gamow state eigenfunctions are not square
integrable and the corresponding eigenvalues are complex. Making abstraction of
the name of the eigenfunction, we may refer to the expression on the left hand side
of the radial differential equation as “formal Hamiltonian,” which may be consid-
ered as an operator defined on a space of functions. If this space is the Hilbert space
of square integrable functions which vanish at the origin (the spaceL2(R+)), the
Hamiltonian is self-adjoint and has only real eigenvalues. The Gamow eigenfunc-
tions are not elements of this space. If we want to consider also the Gamow
eigenfunctions as elements of a space, one has to consider the same “formal
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Hamiltonian” as an operator acting on a larger space, one which contains the
Hilbert space of square integrable functions and the Gamow eigenfunctions. One
such space is the rigged Hilbert space, where the “formal Hamiltonian” can have
eigenfunctions which are not square integrable and have complex energy eigenval-
ues. On the Hilbert subspace of the rigged Hilbert space, the formal Hamiltonian
is selfadjoint.

Gamow also considered that resonances are produced in resonance scat-
tering. This implies the existence of two Hamiltonians: the unperturbed or free
HamiltonianH0 and the total HamiltonianH . Responsible for the resonance pro-
cess is the presence of a potentialV = H − H0. These ideas appear to be very
useful in the study of resonances and have been used since then on by many authors
(Bohm, 1993; Br¨andas and Elander, 1989; Goldberger and Watson, 1964; Newton,
1982; Nussenzveig, 1972).

In this context and under rather general conditions, there are several equiva-
lent ways to introduce resonances in Quantum Mechanics: i.) Pairs of poles in the
analytic continuation of theS-matrix in the momentum or energy representation
(Bohm, 1993; Newton, 1982; Nussenzveig, 1972), ii.) Poles in the analytic con-
tinuation of the reduced resolvent through the spectrum ofH (Friedrichs, 1948;
Horwitz and Marchand, 1971), iii.) Complex eigenvalues of an analytically dilated
Hamiltonian (Reed and Simon, 1979), iv.) Complex eigenvalues of the Hamiltonian
with eigenvectors satisfying “purely outgoing boundary conditions” (de la Madrid,
2000, 2001), v.) Complex eigenvalues of a dissipative generator of a semigroup in
the Lax–Phillips theory (Lax and Philips, 1967; Strausset al., 2000).

Then, Gamow vectors are generalized eigenvectors ofH with complex eigen-
values (Bohm, 1993; Bohm and Gadella, 1989) at the resonance points. These
eigenvectors belong to non Hilbert equipments of the Hilbert space on whichH
acts, called rigged Hilbert spaces or Gelfand triplets (Bohm, 1993; Gadella and
Gómez, 2003).

This is a brief review that intends to show how Gamow vectors are obtained.
Although the procedure is very general, the two examples presented here illustrate
the method. The first example is the Friedrichs model in which we allow the
resonance poles to have multiplicity one or two. In the second model, we assume
a spherically symmetric potential to work with a fixed value of the orbital angular
momentum, in our casel = 0, and then construct theSmatrix, in the momentum
representation, with poles at given points.

2. GAMOW VECTORS IN THE FRIEDRICHS MODEL

2.1. The Friedrichs Model in Hilbert Space

In this paper, we shall deal with the simplest form of the Friedrichs model
(Antoniou and Prigogine, 1993; Exner, 1985; Friedrichs, 1948; Horwitz and
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Marchand, 1971). In this version of the Friedrichs model, the free Hamiltonian
H0 has a simple continuous spectrum, which isR+ ≡ [0,∞), plus an eigenvalue
ω0 embedded in this continuous spectrum (ω0 > 0).

The Hilbert space of this system in the energy representation is the direct sum

H := C⊕ L2(R+), (1)

so that, anyψ ∈ H can be represented as

ψ =
(

α

ϕ(ω)

)
, (2)

whereα is a complex number. The functionϕ(ω) is square integrable on the
interval [0,∞), i.e.,ϕ(ω) ∈ L2(R+), whereR+ := [0,∞). The scalar product of
two vectors inH is given by((

α

ϕ(ω)

)
,

(
β

η(ω)

))
= α∗β +

∫ ∞
0
ϕ∗(ω)η(ω) dω. (3)

Here,β is a complex number andη(ω) ∈ L2(R+). The domain ofH0 (the subspace
of all vectorsψ ∈ H such thatH0ψ ∈ H) is given by the vectors inH of the form
(2) such thatωϕ(ω) ∈ L2(R+). The action ofH0 in (2) is given by

H0

(
α

ϕ(ω)

)
=
(
ω0 α

ω ϕ(ω)

)
. (4)

Observe that the vector

|1〉 =
(

1

0

)
(5)

is an eigenvector ofH0 with eigenvalueω0, i.e., H0|1〉 = ω0|1〉. As

H0

(
0

ϕ(ω)

)
=
(

0

ω ϕ(ω)

)
, (6)

i.e., H0 is the multiplication operator for the second component on the interval
R+ = [0,∞), we conclude thatH0 has a non degenerate absolutely continuous
spectrum that coincides with [0,∞) plus an eigenvalue,ω0. Sinceω0 > 0 by
construction, the eigenvalue ofH0 is embedded in its continuous spectrum.

The potentialV is defined as an interaction between the discrete and contin-
uous parts ofH0. Its form is the following:

Vψ =
(∫∞

0 f (ω)ϕ(ω) dω

α f ∗(ω)

)
, (7)
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whereψ is the arbitrary vector given in (2) andf (ω) is a function onR+ called
the form factor. Observe that if we wantVψ to be inH, the form factor f (ω)
must be inL2(R+). The total Hamiltonian is given byH := H0+ λV , whereλ is
a real parameter. This Hamiltonian has simple continuous spectrum only, without
discrete eigenvalues, which isR+ = [0,∞).

What has happened with the eigenvalue ofH0? As the interaction is switched
on, this eigenvalue isdissolvedin the continuous spectrum ofH0. Nevertheless,
the corresponding bound statereappearsas a resonance as we shall explain next.

In order to study the resonances in the Friedrichs model, it is customary to
define thereduced resolventof H , which is the projection to the subspace spanned
by |1〉 of the resolvent ofH :

|1〉〈1| 1

z− H
|1〉〈1| = 1

η(z)
|1〉〈1| (8)

with (Exner, 1985)

η(z) = z− ω0− λ2
∫ ∞

0

| f (ω)|2
z− ω dω. (9)

It has been shown that, under certain conditions (Antoniouet al., 1998; Exner,
1985) imposed to| f (ω)|2, the functionη(z) defined in (9) is complex analytic
with no singularities on the complex plane other than a branch cut coinciding
with the positive semiaxisR+ provided thatη(0) > 0. It admits respective analytic
continuations through the cut from above to below (from the upper to the lower
half plane)η+(z) and from below to above (from the lower to the upper half plane)
η−(z). The continuationη+(z) has a zero atz0 with F{z0} < 0, which is an analytic
function on the coupling parameterλ on a neighborhood of zero. Analogously,
η−(z) admits a zero atz∗0, which is also analytic function ofλ.

The zeroesz0 andz∗0 are therefore the poles of the reduced resolvent. We define
theresonance polesof the pair (H0, H ) as the zeroes, of the analytic continuations
through the spectrum, ofη+(z) andη−(z).

It is possible to show that the scattering Møller wave operators are well defined
in the Friedrichs model (Exner, 1985). Therefore, theSoperator exists. Since the
continuous spectrum of the Friedrichs model is not degenerated, the form of theS
operator is

S

(
α

ϕ(ω)

)
=
(

α

S(ω)ϕ(ω)

)
.

The functionsS(ω) is analytic with a branch cut in the positive semiaxisR+. It
admits analytic continuations from above to below and from below to above with
respective poles at the pointsz0 andz∗0, exactly the poles of the reduced resolvent
(Antoniou and Melnikov, 1998; Horwitz and Marchand, 1971). It is therefore,
legitimate to look atz0 andz∗0 as resonance poles for the pair (H0, H ).
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The condition that| f (ω)|2 should be the restriction toR+ of an entire analytic
function can be weakened. For instance in (Antoniouet al., 1998), we have con-
structed a Friedrichs model for which| f (ω)|2 is analytic on the complex variable
ω with a branch cut in the positive semiaxis.

We want to recall that the zeroes of the analytic functionsη+(z) andη−(z)
are, in general, analytic functions of the coupling parameterλ (Exner, 1985). This
means thatz0 as well asz∗0 go toω0 asλ 7→ 0. We see that as the interactionλV
is switched on, the bound state is transformed into a resonance (under a simple
condition such asη(0) > 0).

2.2. The Friedrichs Model in Rigged Hilbert Space

According to the Gelfand–Maurin spectral theorem, there exists a rigged
Hilbert space6 Φ ⊂ H ⊂ Φ× such thatH0Φ ⊂ Φ, H0 is continuous onΦ and for
anyω ∈ R+, the absolutely continuous spectrum ofH0, there exists a|ω〉 ∈ Φ×

with H0|ω〉 = ω|ω〉. As H0 still has the eigenvector|1〉, the spectral decomposition
of H0 is then,

H0 = ω0|1〉〈1| +
∫ ∞

0
ω|ω〉〈ω| dω. (10)

Then,V andψ ∈ H must have respectively the following form:

V =
∫ ∞

0
( f ∗(ω)|ω〉〈1| + f (ω)|1〉〈ω|) dω, (11)

ψ = α|1〉 +
∫ ∞

0
ϕ(ω)|ω〉 dω. (12)

With the new notation, the action ofV onψ can be obtained easily if we note
that

〈1|1〉 = 1

〈1|ω〉 = 〈ω|1〉 = 0

6 A rigged Hilbert space is a triplet of spacesΦ ⊂ H ⊂ Φ×, whereH is an infinite dimensional
separable Hilbert space,Φ a dense subspace ofH endowed with a topology with more open sets (and
therefore, less Cauchy sequences) than the topology onH andΦ× is the antidual ofΦ. Being given
a topological vector spaceΦ, its antidual,Φ×, is the vector space whose elements are continuous
antilinear mappings fromΦ into C. The property of antilinearity is characterized as follows: If
ϕ, ψ ∈ Φ, α, β ∈ C, andF ∈ Φ×, we have that

F(αϕ + βψ) = α∗F(ϕ)+ β∗F(ψ),

where the star denotes complex conjugation. For more details on rigged Hilbert spaces, see for instance
(Antoine, 1969, 1998; Bohm and Gadella, 1989) and references therein. See also (Gadella and G´omez,
2003) in this volume.
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〈ω|ω′〉 = 〈ω′|ω〉 = δ(ω − ω′). (13)

Choice of8. We have two possibilities: LetS be the Schwartz space7 and let
H2
± be the spaces of Hardy functions on the upper (+) or lower (−) half planes

(Bohm and Gadella, 1989; Koosis, 1980, 1990), whereS∩H2
±|R+ is the space of

the restrictions to the positive semiaxisR+ of the functions inS∩H2
±. Then,

Φ± := C⊕ (S∩H2
±
∣∣
R+
)

,

so that

C⊕ (S∩H2
±
∣∣
R+
) ⊂ C⊕ L2(R+) ⊂ C⊕ (S∩H2

±
∣∣
R+
)×

is a RHS, where

Φ×± := C⊕ (S∩H2
±
∣∣
R+
)×
.

Now, if the form factorf (ω) ∈ L2(R+) or if f (ω) is a polynomial in the variableω
or even a Dirac delta,δ(ω), then the total HamiltonianH is a continuous operator
from Φ± into Φ×±. In some cases the domain ofH can be enlarged to include the
Gamow vectors.

2.3. Gamow Vectors for the Friedrichs Model

The Gamow vectors (Antoniou and Prigogine, 1993; Bohm, 1993; Bohm and
Gadella, 1989),| f0〉 and| f̃ 0〉, are characterized by the following property:

H | f0〉 = z0| f0〉; H | f̃ 0〉 = z∗0| f̃ 0〉, (14)

sincez0 andz∗0 are complex numbers,| f0〉 and| f̃ 0〉 are not normalizable vectors.
As a matter of fact,| f0〉 ∈ Φ×+ and| f̃ 0〉 ∈ Φ×−.

We shall see how to obtain the Gamow vectors corresponding to the resonance
states of the Friedrichs model. First, we shall assume that the zeroes ofη±(z) at
z0 andz∗0 are simple. Then, to obtain the Gamow vector, consider the following
eigenvalue equation valid for anyx > 0:

(H − x)9(x) = 0, (15)

where9(x) is the eigenvector ofH for the eigenvaluex. As the eigenvectors|1〉
and|ω〉 form a complete system, we have

9(x) = ψ(x)|1〉 +
∫ ∞

0
ψ(x, ω)|ω〉 dω. (16)

7 Space of indefinitely differentiable complex continuous functions on the real line, that they and their
derivatives go to zero at the infinite faster than the inverse of a polynomial.
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Now, if we carry (16) into (15), we obtain the following system of integral
equations:

(ω0− x)ψ(ω)+ λ
∫ ∞

0
ψ(x, ω) f ∗(ω) dω = 0 (17)

(ω − x)ψ(x, ω)+ λ f (ω)ψ(ω) = 0. (18)

To solve this system, we writeψ(ω) in terms ofψ(x, ω) using (18) and carry the
result to (17). We obtain an integral equation, which gives as a solution:

9±(x) = |x〉 + λ f ∗(x)
1

η+(x)

{
|1〉 + λ

∫ ∞
0

f (ω)

x − ω + i 0
|ω〉 dω

}
. (19)

This is a functional in8×+. When applied to a vector in8+, it gives an analytic
function on the lower half plane. We say that9+(x) admits analytic continuation
to the lower half plane (in a weak sense). This continuation has a simple pole at
z0 so that we can write on a neighborhood ofz0:

9+(z) = C

z− z0
+ o(z), (20)

whereo(z) denotes a Taylor series onz, which converges on a neighborhood of
z0. From (15) and (20), we get:

0= (H − z)9+(z) = 1

z− z0
(H − z)C + (H − z)o(z), (21)

which gives

(H − z0)C = 0=⇒ HC = z0C. (22)

This shows that the residueC in (20) is precisely the Gamow vector we are looking
for. Thus, to obtain it, we just proceed as we do in a standard calculus of residua.
In a neighborhood ofz0, we have:

9+(z) ≈ constant

(z− z0)

{
|1〉 + λ

∫ ∞
0

f (ω)

z− ω + i 0
|ω〉 dω

}
+ o(z). (23)

Since
1

z− ω + i 0
= 1

z0− ω + i 0
− z− z0

(z0− ω + i 0)2
+ o(z), (24)

we have that

9+(z) ≈ constant

(z− z0)

{
|1〉 + λ

∫ ∞
0

f (ω)

z0− ω + i 0
|ω〉 dω

}
+ o(z). (25)

Therefore, save for an irrelevant constant, we conclude that

C ≡ | f0〉 = |1〉 +
∫ ∞

0

λ f (ω)

z0− ω + i 0
|ω〉 dω. (26)
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Analogously,

| f̃ 0〉 = |1〉 +
∫ ∞

0

λ f ∗(ω)

z∗0 − ω + i 0
|ω〉 dω. (27)

Therefore, formulas (26) and (27) give us the two Gamow vectors for simple
pole resonances atz0 and z∗0 in the Friedrichs model. Note that| f0〉 ∈ Φ×+ and
| f̃ 0〉 ∈ Φ×−.

2.4. Double Pole Resonances

The existence and the properties of the zeros ofη+(z) andη−(z) depend on
the form factorf (ω). We are interested here in the possibility of having Friedrichs
models with degenerate resonances, i.e., with resonances produced by multiple
zeros ofη+(z) andη−(z). Of course, the simplest case occurs when these zeroes
are double. We shall discuss here this particular example. To this end, let us choose
the following form factor:

| f (ω)|2 =
√
ω

P(ω)
(28)

with

P(ω) := (ω − α)(ω − α∗). (29)

Then,

η(z) = ω0− z− πλ2

{√−z

P(z)
− 1

α − α∗
(√−α

z− α −
√−α∗
z− α∗

)}
. (30)

If we make the change of variables:

z= p2; α = b2 (31)

and writeϕ(p) = η(p2) = η(z), we have that

ϕ(p) = ω0− p2+ iπλ2

(b− b∗)(p+ b)(p− b∗)
. (32)

If ϕ(p) has a double zero atpR, we must have:

ϕ(pR) = 0; ϕ′(pR) = 0; ϕ′′(pR) 6= 0, (33)

which give four equations for six parameters. These are:ω0, λ, RpR, FpR, Rb,
andFb. We have two free parameters that we choose asω0 andλ. Then,

b = ω1/2
0 + 2i

(
πλ2

16ω0

)1/3
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pR =
[
ω0−

(
πλ2

16ω0

)2/3
]
−
(
πλ2

16ω0

)1/3

. (34)

Consequently,

ϕ(p) = − (p− pR)2(p+ p∗R)2

(p+ t)(p− t∗)
(35)

andϕ(p) has two double poles and henceη(z). To obtain the Gamow vectors, we
proceed as before and note that on a neighborhood ofz0 = p2

R, we have

9+(z) = C1

(z− z0)2
+ C2

(z− z0)
+ o(z). (36)

As in the previous case, we have on a neighborhood ofz0

9+(z) ≈ constant

(z− z0)2

{
|1〉 + λ

∫ ∞
0

f (ω)

z− ω + i 0
|ω〉 dω

}
= constant

(z− z0)2

{
|1〉 + λ

∫ ∞
0

f (ω)

z0− ω + i 0
|ω〉 dω

− λ(z− z0)
∫ ∞

0

f (ω)

(z0− ω + i 0)2
|ω〉 dω

}
. (37)

Then,

C1 = |1〉 + λ
∫ ∞

0

f (ω)

z0− ω + i 0
|ω〉 dω (38)

C2 = −λ
∫ ∞

0

f (ω)

(z0− ω + i 0)2
|ω〉 dω (39)

In addition, we can prove that (Antoniouet al., 1998)

HC1 = z0 C1; HC2 = z0C2+ C1 (40)

On the subspace of8× spanned byC1 andC2, the total HamiltonianH has the
following block diagonal form:

H =
(

z0 1

0 z0

)
(41)

This block diagonal form has been found ealier in different contexts
(Brändas, 1995; Br¨andas and Chatzidimitriou-Dreissmann, 1989; Hern´andez and
Mondragón, 1994; Mondrag´on and Hern´andez, 1993, 1996).
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3. GAMOW VECTORS IN A CENTRAL POTENTIAL SCATTERING

If the potential is spherically symmetric, there is a procedure due to Bargmann
(1949) and Theis (1956) to add a finite number of resonances at selected points,
for a fixed value of the angular momentum. We want to illustrate this procedure
with a simple example. Let us begin with the Hamiltonian of a free particle of
massm and spin zero. Here, there is no scattering and hence, for each value of the
orbital angular momentum, the component of theS-matrix is the unity:Sl (k) ≡ I .
We shall use here the momentum representation. Then, in thek-plane, we consider
the following rational function

R(k) := (k− γ1)(k− γ2)

(k− β1)(k− β2)
(42)

where

γ1 := a− ib, γ2 := −a− ib, β1 := c− id, β2 := −c− id (43)

wherea, b, c, andd are positive numbers. We look for a potential such that, the
value of theS-matrix for l = 0 is

S0(k) = R(−k)

R(k)
= (k+ γ1)(k+ γ2)

(k+ β1)(k+ β2)

(k− β1)(k− β2)

(k− γ1)(k− γ2)
(44)

and the other components of theS-matrix for l 6= 0, Sl (k), remain unchanged and
equal to one. Forl = 0, let us consider the following solutions of the free radial
Schrödinger equation:

ϕ(k, r ) = sinkr

k
and f (k, r ) = eikr . (45)

With the help of these solutions, let us construct the following expressions:

xβi (k, r ) := W[ϕ(βi , r ), f (k, r )]

β2
i − k2

= 1

β2
i − k2

[
ik

βi
sinβi r − cosβi r

]
eikr (46)

wherei = 1, 2 and the symbolW denotes the Wronskian of the functions between
brackets. Analogusly,

yβi : = W[ϕ(βi , r ), ϕ(k, r )]

β2
i − k2

= 1

β2
i − k2

[
1

βi
sinβi r coskr − 1

k
cosβi r sinkr

]
, (47)

and finally,

xi j (r ) := xβ j (−γi , r ) = −e−i γi r

2β j

[
eiβ j r

β j − γi
+ e−iβ j r

β j + γi

]
. (48)
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Now, let M be the 2× 2 matrix whose entries arexi j (r ), i , j = 1, 2. The desired
potential is now given, in terms of the radial variabler as (Nussenzveig, 1972)

V(r ) = −2
d2

dr2
log{detM} (49)

In order to obtain the Gamow vectors, corresponding to the resonance polesγ1,2,
we proceed as follows (Nussenzveig, 1972): we have to obtain two functions
Ki (r ), i = 1, 2 satisfying the following system of linear equations:

x11(r )K1(r )+ x12(r )K2(r ) = e−i γ1r

x21(r )K1(r )+ x22(r )K2(r ) = e−i γ2r . (50)

The solution of (50) is:

K1(r ) = x22(r )e−i γ1r − x12(r )e−i γ2r

detM

K2(r ) = x11(r )e−i γ2r − x21(r )e−i γ1r

detM
. (51)

This solution is useful to construct the Gamow vectors for these two resonances.
In fact, the solutions of the radial Schr¨odinger equation forl = 0 with potential
given by (49) and energy−k2/2m are:

h(k, r ) := eikr +
2∑

i=1

Ki (r )xβi (k, r ) (52)

and

g(k, r ) := sinkr

k
+

2∑
i=1

Ki (r )yβi (k, r ) (53)

It is proven that detM 6= 0. Therefore,V(r ) and theKi (r ) are well defined. Observe
that

det M = e−i (γ1+γ2)r

4β1β2
F(r ) (54)

with

F(r ) = Aei (β1+β2)r + Bei (β1−β2)r + Cei (β1+β2)r + De−i (β1−β2)r (55)

whereA, B, C, andD are constants which depend on theβi and theγi . Thus, (52)
and (53) are nonvanishing rational functions of exponentials.

In order to obtain the Gamow vectors, let us consider an incoming free wave
function of the formeikr . To compare this incoming wave function with the out-
going wave function, we need the asymptotic form of (52) for large values ofr ,
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which is given by

h(k, r ) ∼ eikr R(−k). (56)

The relation between the incoming wave function and the outgoing wave function
is given by theS-matrix. Thus, the corresponding solution with asymptotic form
S0(k)eikr is

h̃(k, r ) = h(k, r )

R(k)
, (57)

The Gamow vectors should be obtained from the residues of (57) on the
poles atγi , i = 1, 2. In order to prove this statement, let us consider the following
equation for complexk:

Hψ(k, r ) = k2

2m
ψ(k, r ) (58)

and assume thatψ(k, r ) is a meromorphic function ofk with a simple pole atz0.
Then, we can write

ψ(k, r ) = φ(r )

k− z0
+ r.t., (59)

where r.t. in (59) stands for “regular terms.” The residueφ(r ) depends only onr .
Then,

H

{
φ(r )

k− z0
+ r.t.

}
= 1

k− z0
Hφ(r )+ H{r.t.}

= k2

2m

{
φ(r )

k− z0
+ r.t.

}
(60)

The residue in the above equation is the following limit:

lim
k 7→z0

(k− z0)H

{
φ(r )

k− z0
+ r.t.

}
= lim

k 7→z0

(k− z0)
k2

2m

{
φ(r )

k− z0
+ r.t.

}
. (61)

Equation (61) yields

Hφ(r ) = z2
0

2m
φ(r ) (62)

which shows thatφ(r ) is the eigenvector ofH with eigenvaluez2
0/2m. We apply

this idea to (57), which has poles atγ1 andγ2. Then, the limits

ψGi := lim
k 7→γi

(k− γi )h̃(k, r ) (63)

for i = 1, 2 give the Gamow vectors, which are:

ψG1 =
(γ1− β1)(γ1− β2)

(γ1− γ2)
h(γ1, r ) (64)
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and

ψG2 =
(γ2− β1)(γ2− β2)

(γ2− γ1)
h(γ2, r ) (65)

As R(k) does not depend onr andh(k, r ) satisfies the eigenvalue equation (58),
so does̃h(k, r ) and therefore,ψGi :

HψGi =
γ 2

i

2m
ψGi , i = 1, 2. (66)

Thus,ψGi , i = 1, 2, are the Gamow vectors in this case, as they are eigenvalues of
the Hamiltonian with complex eigenvalues corresponding to the poles ofS0(E).

From (65), (64), (52), and (46), we observe that

lim
r 7→∞ψGi (r ) = ∞, i = 1, 2.

This is a result known since the first paper of Gamow (1928), i.e., that Gamow
vectors grow at infinity in coordinate representation.

4. CONCLUDING REMARKS

We have studied two exactly solvable models in non relativistic Quantum
Mechanics that exhibit resonance phenomena. The first model under our consider-
ation is the Friedrichs model. We introduce the Friedrichs model in Hilbert space
and in rigged Hilbert space languages and show the advantages of the latter. We
present a detailed construction of Gamow vectors for single and double pole reso-
nances in the Friedrichs model. The technique here used to construct the Gamow
vectors can be applied to many other systems.

For spherically symmetric potentials, it is possible to place at selected points
a finite number of resonances and obtain theS-matrix, for a fixed value of the
angular momentum. The radial form of the potential producing these resonances
is then known. This produces a second exactly solvable model having resonances
in which the corresponding Gamow vectors can be obtained.
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