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Gamow Vectors in Exactly Solvable Models
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Through two examples: the Friedrichs model and a particular case of central potential
scattering, we illustrate the way of constructing Gamow vectors.
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1. INTRODUCTION

Gamow vectors have been introduced in order to define a vector state for
exponentially decaying resonances in Quantum Mechanics and named after the
pioneering work by Gamow in 1928 (Gamow, 1928). Although Gamow used a
simple model for the alpha decay, he obtained properties for his Gamow vectors
that are general. In particular, the radial part of their wave functions goes to infinity
asr — oo. Bound state eigenfunctions and Gamow state eigenfunctions are so-
lutions of the same radial differential equation with similar boundary conditions.
However, while bound state eigenfunctions are square integrable functions and the
corresponding eigenvalues are real, Gamow state eigenfunctions are not square
integrable and the corresponding eigenvalues are complex. Making abstraction of
the name of the eigenfunction, we may refer to the expression on the left hand side
of the radial differential equation as “formal Hamiltonian,” which may be consid-
ered as an operator defined on a space of functions. If this space is the Hilbert space
of square integrable functions which vanish at the origin (the spa(e™)), the
Hamiltonian is self-adjoint and has only real eigenvalues. The Gamow eigenfunc-
tions are not elements of this space. If we want to consider also the Gamow
eigenfunctions as elements of a space, one has to consider the same “formal
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Hamiltonian” as an operator acting on a larger space, one which contains the
Hilbert space of square integrable functions and the Gamow eigenfunctions. One
such space is the rigged Hilbert space, where the “formal Hamiltonian” can have

eigenfunctions which are not square integrable and have complex energy eigenval-
ues. On the Hilbert subspace of the rigged Hilbert space, the formal Hamiltonian

is selfadjoint.

Gamow also considered that resonances are produced in resonance scat-
tering. This implies the existence of two Hamiltonians: the unperturbed or free
HamiltonianHp and the total Hamiltoniafl . Responsible for the resonance pro-
cess is the presence of a potenWak= H — Hy. These ideas appear to be very
useful in the study of resonances and have been used since then on by many authors
(Bohm, 1993; Bandas and Elander, 1989; Goldberger and Watson, 1964; Newton,
1982; Nussenzveig, 1972).

In this context and under rather general conditions, there are several equiva-
lent ways to introduce resonances in Quantum Mechanics: i.) Pairs of poles in the
analytic continuation of th&-matrix in the momentum or energy representation
(Bohm, 1993; Newton, 1982; Nussenzveig, 1972), ii.) Poles in the analytic con-
tinuation of the reduced resolvent through the spectruid ¢fFriedrichs, 1948;
Horwitz and Marchand, 1971), iii.) Complex eigenvalues of an analytically dilated
Hamiltonian (Reed and Simon, 1979), iv.) Complex eigenvalues of the Hamiltonian
with eigenvectors satisfying “purely outgoing boundary conditions” (de la Madrid,
2000, 2001), v.) Complex eigenvalues of a dissipative generator of a semigroup in
the Lax—Phillips theory (Lax and Philips, 1967; Straasal., 2000).

Then, Gamow vectors are generalized eigenvectarswith complex eigen-
values (Bohm, 1993; Bohm and Gadella, 1989) at the resonance points. These
eigenvectors belong to non Hilbert equipments of the Hilbert space on which
acts, called rigged Hilbert spaces or Gelfand triplets (Bohm, 1993; Gadella and
Gbmez, 2003).

This is a brief review that intends to show how Gamow vectors are obtained.
Although the procedure is very general, the two examples presented here illustrate
the method. The first example is the Friedrichs model in which we allow the
resonance poles to have multiplicity one or two. In the second model, we assume
a spherically symmetric potential to work with a fixed value of the orbital angular
momentum, in our cade= 0, and then construct tHf@matrix, in the momentum
representation, with poles at given points.

2. GAMOW VECTORS IN THE FRIEDRICHS MODEL
2.1. The Friedrichs Model in Hilbert Space

In this paper, we shall deal with the simplest form of the Friedrichs model
(Antoniou and Prigogine, 1993; Exner, 1985; Friedrichs, 1948; Horwitz and
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Marchand, 1971). In this version of the Friedrichs model, the free Hamiltonian
Ho has a simple continuous spectrum, whiclRis = [0, co), plus an eigenvalue
wo embedded in this continuous spectrupg & 0).

The Hilbert space of this system in the energy representation is the direct sum

H:=C @ L3R"), (1)

so that, anyy € H can be represented as

y=|( " )
o))’

wherea is a complex number. The functiop(w) is square integrable on the
interval [0,00), i.e.,¢(w) € L2(R™), whereR™ := [0, oo). The scalar product of
two vectors inH is given by

o B . o
((‘P(w)) ’ (U(w))) =a"p +/o ¢ (0)n(w) do. (3)

Here,8 is a complex number ang{w) € L?(R"). The domain oHjy (the subspace
of all vectorsyr € H such thatHoy € H) is given by the vectors i of the form
(2) such thatwp(w) € L?(R"). The action ofHg in (2) is given by

o wo o
H°(¢@»>=:<w¢@»)‘ @
Observe that the vector
|n::(1) ©)
0

is an eigenvector ofly with eigenvaluewg, i.e., Ho|1) = wo|l). As

Y 0 . 0 ©)
BVOVARCTIOIA

i.e., Ho is the multiplication operator for the second component on the interval
R* = [0, c0), we conclude thaH, has a non degenerate absolutely continuous
spectrum that coincides with [B¢) plus an eigenvaluayy. Sincewy > 0 by
construction, the eigenvalue bf; is embedded in its continuous spectrum.

The potentiaV is defined as an interaction between the discrete and contin-
uous parts oHp. Its form is the following:

_ fooo f(w) p(w) dw
Vv = ( af*(w) ) ' @
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wherey is the arbitrary vector given in (2) ant(w) is a function orR* called
the form factor. Observe that if we wakty: to be in, the form factorf (w)
must be inL2(R™). The total Hamiltonian is given bid := Hy + AV, wherex is
a real parameter. This Hamiltonian has simple continuous spectrum only, without
discrete eigenvalues, whichlis" = [0, co).
What has happened with the eigenvaludig? As the interaction is switched
on, this eigenvalue idissolvedn the continuous spectrum ¢f,. Nevertheless,
the corresponding bound stagappearsas a resonance as we shall explain next.
In order to study the resonances in the Friedrichs model, it is customary to
define theeduced resolverdf H, which is the projection to the subspace spanned
by |1) of the resolvent oH:

1 1) Y1 = E'l 8)
with (Exner, 1985)
00 2
n(2) =z— wo — Az/(; % do. 9)

It has been shown that, under certain conditions (Antoat@l, 1998; Exner,
1985) imposed tq f (w)|?, the functionn(z) defined in (9) is complex analytic
with no singularities on the complex plane other than a branch cut coinciding
with the positive semiaxi™* provided tha;(0) > 0. It admits respective analytic
continuations through the cut from above to below (from the upper to the lower
half plane);,.(z) and from below to above (from the lower to the upper half plane)
n-(2). The continuatiom.(z) has a zero at, with §{zo} < 0, which is an analytic
function on the coupling paramet&ron a neighborhood of zero. Analogously,
n-(z) admits a zero atj, which is also analytic function of.

The zeroeg, andzf are therefore the poles of the reduced resolvent. We define
theresonance polesf the pair Hp, H) as the zeroes, of the analytic continuations
through the spectrum, af,(z) andn_(2).

Itis possible to show that the scattering Maller wave operators are well defined
in the Friedrichs model (Exner, 1985). Therefore, 8w@perator exists. Since the
continuous spectrum of the Friedrichs model is not degenerated, the form®f the

operator is
s o . o
o)) \S@e@))]

The functionsS(w) is analytic with a branch cut in the positive semiaRis. It
admits analytic continuations from above to below and from below to above with
respective poles at the poirdgandzj, exactly the poles of the reduced resolvent
(Antoniou and Melnikov, 1998; Horwitz and Marchand, 1971). It is therefore,
legitimate to look aizp andz as resonance poles for the pdifg( H).
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The condition that f (w)|2 should be the restriction " of an entire analytic
function can be weakened. For instance in (Antorebal, 1998), we have con-
structed a Friedrichs model for whi¢t (w)|? is analytic on the complex variable
o With a branch cut in the positive semiaxis.

We want to recall that the zeroes of the analytic functipn&) andn_(2)
are, in general, analytic functions of the coupling parame(&xner, 1985). This
means thaky as well aszf go towp asi +— 0. We see that as the interactiobW
is switched on, the bound state is transformed into a resonance (under a simple
condition such ag(0) > 0).

2.2. The Friedrichs Model in Rigged Hilbert Space

According to the Gelfand—Maurin spectral theorem, there exists a rigged
Hilbert spacé ® ¢ H c ®* such thatHo® C ®, Hg is continuous orP and for
anyw € RT, the absolutely continuous spectrumkf, there exists dw) € &~
with Ho|w) = w|w). As Hy still has the eigenvectdt), the spectral decomposition
of Hg is then,

Ho = wo|1)(1] +/ wlw){w] do. (10)
0
Then,V andy € H must have respectively the following form:
V= [ (@i + o) do (12)
v=alt)+ [ gl do. 12)

With the new notation, the action ®f onvr can be obtained easily if we note
that

11 =1
(lo) = (@]1) =0

6A rigged Hilbert space is a triplet of spac@sc H c ®*, where’H is an infinite dimensional
separable Hilbert spac®, a dense subspace&fendowed with a topology with more open sets (and
therefore, less Cauchy sequences) than the topology and®* is the antidual ofp. Being given
a topological vector spac®, its antidual,®*, is the vector space whose elements are continuous
antilinear mappings fron® into C. The property of antilinearity is characterized as follows: If
0, ¥ € ®,a, B eC,andF € &>, we have that

Flag + BY) = a*F(p) + B F(¥),
where the star denotes complex conjugation. For more details on rigged Hilbert spaces, see for instance

(Antoine, 1969, 1998; Bohm and Gadella, 1989) and references therein. See also (Gadetimand G~
2003) in this volume.
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(w|o) = (@ |w) = §(w — o). (13)

Choice of®. We have two possibilities: Le$ be the Schwartz spatend let
H?2 be the spaces of Hardy functions on the uppey ¢r lower () half planes
(Bohm and Gadella, 1989; Koosis, 1980, 1990), wgfeH?2 |+ is the space of
the restrictions to the positive semia®g of the functions inSN 2. Then,

P, =C®(SNHL|p).
so that
Ce (SNHZ
is a RHS, where

o) CC®LART) Cc Co (SNHE|,.)

@ =Ceo(SNHL|,.)".

Now, if the form factorf (w) € L?(R™) orif f(w)is a polynomial in the variable

or even a Dirac delta(w), then the total Hamiltoniahl is a continuous operator
from ®, into ®7. In some cases the domainldfcan be enlarged to include the
Gamow vectors.

2.3. Gamow Vectors for the Friedrichs Model

The Gamow vectors (Antoniou and Prigogine, 1993; Bohm, 1993; Bohm and
Gadella, 1989)} fp) and| f ), are characterized by the following property:

Hifo) = zol fo);  H|fo) =z o), (14)

sincezy andz are complex numbers$fo) and| fo) are not normalizable vectors.
As a matter of fact, fo) € ® and|fo) € ®*.

We shall see how to obtain the Gamow vectors corresponding to the resonance
states of the Friedrichs model. First, we shall assume that the zergeézpfat
Zp andz; are simple. Then, to obtain the Gamow vector, consider the following
eigenvalue equation valid for ary> 0:

(H—x)¥(x) =0, (15)

whereW(x) is the eigenvector ofl for the eigenvalue. As the eigenvectord)
and|w) form a complete system, we have

wm=wmm+ﬁmemmm@ (16)

”Space of indefinitely differentiable complex continuous functions on the real line, that they and their
derivatives go to zero at the infinite faster than the inverse of a polynomial.
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Now, if we carry (16) into (15), we obtain the following system of integral
equations:

(wo—x)t/f(a))—i—)L/OOO ¥ (X, w) f*(w) do =0 a7

(0 = X)¥ (X, w) + AT (w)¢¥(w) = 0. (18)

To solve this system, we writ¢ (w) in terms ofy (X, w) using (18) and carry the
result to (17). We obtain an integral equation, which gives as a solution:

1 *©  f(w)
W (X) = |X) + AF*(x 1)+ 2 ————|w) dot. 19
200 =420 [T e do). o)
Thisis afunctional inb . When applied to a vector i, it gives an analytic
function on the lower half plane. We say thif (x) admits analytic continuation
to the lower half plane (in a weak sense). This continuation has a simple pole at
Zy SO that we can write on a neighborhoodzgf

mw=£§+wx (20)

whereo(z) denotes a Taylor series @ which converges on a neighborhood of
Zo. From (15) and (20), we get:

0=(H-2V,.(2 = i(H —2)C + (H — 2)0(2), (21)

which gives

This shows that the resid@in (20) is precisely the Gamow vector we are looking
for. Thus, to obtain it, we just proceed as we do in a standard calculus of residua.
In a neighborhood af,, we have:

__ constant © f(w)
v, (2) ~ -2 {|1) + A/O mm) da)} + 0(2). (23)

Since
1 1 Z— 2
Z—w+i0 Z-w+i0 (20— w+i0)
we have that
o0
W, (2) ~ ‘(:;’rf:)m{ 1)+ A /O % ) da)} +0(2. (25)
Therefore, save for an irrelevant constant, we conclude that

+ 0o(2), (24)

ey — > (o)
C=|fo)—|1)+/0 zo—w+io|‘”>d")' (26)



2396 Antoniou, Gadella, Mateo, and Pronko

Analogously,

~ © Af*(w)
foy =11 ———|w) do. 27
o =im+ [ SUTICL (27)
Therefore, formulas (26) and (27) give us the two Gamow vectors for simple
pgle resonances ap andz; in the Friedrichs model. Note thafo) € ®3 and

[fo) € ®*.

2.4. Double Pole Resonances

The existence and the properties of the zeros,q¥) andn_(z) depend on
the form factorf (). We are interested here in the possibility of having Friedrichs
models with degenerate resonances, i.e., with resonances produced by multiple
zeros ofn(z) andn_(z). Of course, the simplest case occurs when these zeroes
are double. We shall discuss here this particular example. To this end, let us choose
the following form factor:

_ Ao
| f(w))* = P@) (28)
with
P(w) = (v — a)(w — ). (29)
Then,
-z 1 = N —a*
n(z):wo—z—nAZ{P(Z)—a_a* <Z—oe_Z—ot*>}' (30)
If we make the change of variables:
z=1p?% a=b? (31)
and writep(p) = n(p?) = n(2), we have that
P52
o(P) = w0 — P2+ s (32)

(b —Db*)(p+b)(p - b*)’
If ¢(p) has a double zero gir, we must have:
¢(pr) =0; ¢'(pr) =0; ¢"(pr) # 0, (33)

which give four equations for six parameters. These @asei, R pr, T Pr, Rb,
andgb. We have two free parameters that we choosegeandai. Then,

. )\.2 1/3
b=owl?+2i (f&)o)
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a2\ Y3 A2\
pR=[wo—(16w0) () - (34)

(p— PR)A(P + PR)?
o+ 0(p— 1) (33)

andg(p) has two double poles and heng@). To obtain the Gamow vectors, we
proceed as before and note that on a neighborhoagl f p3, we have

C C,
5+
(z—-2)*  (z2—12)
As in the previous case, we have on a neighborhoag of

v, (2) ~ Mt{uwx/ _ M@, da)}
0

Consequently,

@(p) = —

v, (2) = + 0(2). (36)

- 27 Z=w+i0
_ %t{m +A/OOO %@) de
i) [ o) dol. 37
Then,
Ci = |1>+A/Ow%|w> do (38)
Co=—A /Ooo %m) dw (39)

In addition, we can prove that (Antoniai al,, 1998)
HCi =2C;; HCy=2C;+C; (40)

On the subspace @b* spanned byC; andC,, the total HamiltoniarH has the

following block diagonal form:
1
H = ( % ) (41)
0 z

This block diagonal form has been found ealier in different contexts
(Brandas, 1995; Bridas and Chatzidimitriou-Dreissmann, 1989; lded€z and
Mondragn, 1994; Mondragn and Herahdez, 1993, 1996).
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3. GAMOW VECTORS IN A CENTRAL POTENTIAL SCATTERING

If the potential is spherically symmetric, there is a procedure due to Bargmann
(1949) and Theis (1956) to add a finite number of resonances at selected points,
for a fixed value of the angular momentum. We want to illustrate this procedure
with a simple example. Let us begin with the Hamiltonian of a free particle of
massam and spin zero. Here, there is no scattering and hence, for each value of the
orbital angular momentum, the component of $amatrix is the unity:S(k) = I.

We shall use here the momentum representation. Then, kaplane, we consider
the following rational function

R(K) := (k= y1))(k = y2) (42)

(k= Bk — B2)

where
yp:=a—ib, yp:=—-a—ib, g1:=c—id, Br:=—-c—id (43)

wherea, b, ¢, andd are positive numbers. We look for a potential such that, the
value of theS-matrix forl = 0is

S(K) = REK) _ (k+yi)(k+y2) (k= Bi)(k = B2)
R(k)  (k+ Bo)(k+ B2) (k= y1)(k —y2)
and the other components of tBematrix forl # 0, S(k), remain unchanged and

equal to one. For = 0, let us consider the following solutions of the free radial
Schiodinger equation:

(44)

sinkr
k,r) =
ok, 1) P

With the help of these solutions, let us construct the following expressions:

W[(p(ﬂi’zr)’ k1)l == ! [ﬁ singir — cosﬂir} e (46)
,Bi —k? ﬂi —k? 5i
wherei = 1, 2 and the symbal denotes the Wronskian of the functions between
brackets. Analogusly,
. Wie@Bi,r), ek )]

Bi - :3i2 K2

and f(k r)=¢€". (45)

Xg (K, 1) ==

= ﬁzilkz [ﬂi singir coskr — %COSﬁif Si”kr} , (“47)
[ 1

and finally,

—ipr eiﬂjr —iBir
90 =% 0= [ﬂ,— 7 +;+m]' )
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Now, let M be the 2x 2 matrix whose entries aog; (r), i, ] = 1, 2. The desired
potential is now given, in terms of the radial variablas (Nussenzveig, 1972)

d2
V()= —Zﬁ log{detM} (49)

In order to obtain the Gamow vectors, corresponding to the resonancepeles
we proceed as follows (Nussenzveig, 1972): we have to obtain two functions

Ki(r),i = 1, 2 satisfying the following system of linear equations:
X11(r ) K1 (r) + Xao(r)Ko(r) = e 7"
X21(r)Ka(r) + Xoo(r )Ko(r) = €7 (50)

The solution of (50) is:

Xoo(r)e M — xqo(r)e v
detM
X11(r)e™72" — Xopy(r)e '

detM '
This solution is useful to construct the Gamow vectors for these two resonances.

In fact, the solutions of the radial Sddinger equation for = 0 with potential
given by (49) and energy-k?/2m are:

Ku(r) =

Ka(r) =

(51)

2
hk,r) = + > Ki(r)xgi(k, 1) (52)
i=1
and
sinkr &
glk.r) = = — + 3 _Ki()yi(k.1) (53)
i=1

Itis proventhatdeM = 0. ThereforeV (r) and theK; (r) are well defined. Observe
that

e ity
detM = ——F(r) (54)
4B1p2
with
F(r) = Ad Pt | gdBi=par | cdPrthar 4 pgi(Br—For (55)

whereA, B, C, andD are constants which depend on fhend they;. Thus, (52)
and (53) are nonvanishing rational functions of exponentials.

In order to obtain the Gamow vectors, let us consider an incoming free wave
function of the forme®". To compare this incoming wave function with the out-
going wave function, we need the asymptotic form of (52) for large values of
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which is given by
hk, r) ~ € R(—k). (56)

The relation between the incoming wave function and the outgoing wave function
is given by theS-matrix. Thus, the corresponding solution with asymptotic form
S(k)EX" is

(67)

The Gamow vectors should be obtained from the residues of (57) on the
poles aty;, i = 1, 2. In order to prove this statement, let us consider the following
equation for complek:

k2
Hy ki r) = o-vkr) (58)

and assume thak(k, r) is a meromorphic function &€ with a simple pole atg.
Then, we can write

vk, 1) = % +rt., (59)

where r.t. in (59) stands for “regular terms.” The residife) depends only on.
Then,

H {k(bﬁ +r.t.} = iH¢(r)+ H{r.t.}

-2 k—12o
k2 [ o)

—%{k_zo—kr.t.} (60)

The residue in the above equation is the following limit:

. o(r) o kK [ o)
kILr)nZO(k — zo)H {m + r.t.} = kILr)nZO(k — zo)% P— +rt.p. (61)
Equation (61) yields
_ 5

Ho(r) = 5-6(r) (62)

which shows thai(r) is the eigenvector oH with eigenvaluezi/2m. We apply
this idea to (57), which has poles;atandy,. Then, the limits

Ve = lim (k- y)hk, 1) (63)

fori =1, 2 give the Gamow vectors, which are:

(1= B)(y1 — B2)

Ve, = h(y1, 1) (64)
(r1—v2)
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and

(v2 — B)(y2 — B2)

ve. = (y2— )

h(y2,1) (65)

As R(k) does not depend anandh(k, r) satisfies the eigenvalue equation (58),
so doesh(k, r) and thereforeyg, :

2
Hye, = ;/—Imlﬂei. i=12 (66)

Thus,yg,, i =1, 2, are the Gamow vectors in this case, as they are eigenvalues of
the Hamiltonian with complex eigenvalues corresponding to the pol&g &j.
From (65), (64), (52), and (46), we observe that

lim e, (1) =00, i =12

This is a result known since the first paper of Gamow (1928), i.e., that Gamow
vectors grow at infinity in coordinate representation.

4. CONCLUDING REMARKS

We have studied two exactly solvable models in non relativistic Quantum
Mechanics that exhibit resonance phenomena. The first model under our consider-
ation is the Friedrichs model. We introduce the Friedrichs model in Hilbert space
and in rigged Hilbert space languages and show the advantages of the latter. We
present a detailed construction of Gamow vectors for single and double pole reso-
nances in the Friedrichs model. The technique here used to construct the Gamow
vectors can be applied to many other systems.

For spherically symmetric potentials, it is possible to place at selected points
a finite number of resonances and obtain 8matrix, for a fixed value of the
angular momentum. The radial form of the potential producing these resonances
is then known. This produces a second exactly solvable model having resonances
in which the corresponding Gamow vectors can be obtained.
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